.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/features_detection/plot_sift.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_features_detection_plot_sift.py: ============================================== SIFT feature detector and descriptor extractor ============================================== This example demonstrates the SIFT feature detection and its description algorithm. The scale-invariant feature transform (SIFT) [1]_ was published in 1999 and is still one of the most popular feature detectors available, as its promises to be "invariant to image scaling, translation, and rotation, and partially in-variant to illumination changes and affine or 3D projection" [2]_. Its biggest drawback is its runtime, that's said to be "at two orders of magnitude" [3]_ slower than ORB, which makes it unsuitable for real-time applications. References ---------- .. [1] https://en.wikipedia.org/wiki/Scale-invariant_feature_transform .. [2] D.G. Lowe. "Object recognition from local scale-invariant features", Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol.2, pp. 1150-1157. :DOI:`10.1109/ICCV.1999.790410` .. [3] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski "ORB: An efficient alternative to SIFT and SURF" http://www.gwylab.com/download/ORB_2012.pdf .. GENERATED FROM PYTHON SOURCE LINES 30-89 .. code-block:: default import matplotlib.pyplot as plt from skimage import data from skimage import transform from skimage.color import rgb2gray from skimage.feature import match_descriptors, plot_matches, SIFT img1 = rgb2gray(data.astronaut()) img2 = transform.rotate(img1, 180) tform = transform.AffineTransform(scale=(1.3, 1.1), rotation=0.5, translation=(0, -200)) img3 = transform.warp(img1, tform) descriptor_extractor = SIFT() descriptor_extractor.detect_and_extract(img1) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img2) keypoints2 = descriptor_extractor.keypoints descriptors2 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img3) keypoints3 = descriptor_extractor.keypoints descriptors3 = descriptor_extractor.descriptors matches12 = match_descriptors(descriptors1, descriptors2, max_ratio=0.6, cross_check=True) matches13 = match_descriptors(descriptors1, descriptors3, max_ratio=0.6, cross_check=True) fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(11, 8)) plt.gray() plot_matches(ax[0, 0], img1, img2, keypoints1, keypoints2, matches12) ax[0, 0].axis('off') ax[0, 0].set_title("Original Image vs. Flipped Image\n" "(all keypoints and matches)") plot_matches(ax[1, 0], img1, img3, keypoints1, keypoints3, matches13) ax[1, 0].axis('off') ax[1, 0].set_title("Original Image vs. Transformed Image\n" "(all keypoints and matches)") plot_matches(ax[0, 1], img1, img2, keypoints1, keypoints2, matches12[::15], only_matches=True) ax[0, 1].axis('off') ax[0, 1].set_title("Original Image vs. Flipped Image\n" "(subset of matches for visibility)") plot_matches(ax[1, 1], img1, img3, keypoints1, keypoints3, matches13[::15], only_matches=True) ax[1, 1].axis('off') ax[1, 1].set_title("Original Image vs. Transformed Image\n" "(subset of matches for visibility)") plt.tight_layout() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_features_detection_plot_sift.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/main?filepath=notebooks/auto_examples/features_detection/plot_sift.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/features_detection/plot_sift.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sift.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sift.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_