.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_pipeline_display.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py: ================================================================= Displaying Pipelines ================================================================= The default configuration for displaying a pipeline in a Jupyter Notebook is `'diagram'` where `set_config(display='diagram')`. To deactivate HTML representation, use `set_config(display='text')`. To see more detailed steps in the visualization of the pipeline, click on the steps in the pipeline. .. GENERATED FROM PYTHON SOURCE LINES 15-21 Displaying a Pipeline with a Preprocessing Step and Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with a preprocessing step, :class:`~sklearn.preprocessing.StandardScaler`, and classifier, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 21-33 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn import set_config steps = [ ("preprocessing", StandardScaler()), ("classifier", LogisticRegression()), ] pipe = Pipeline(steps) .. GENERATED FROM PYTHON SOURCE LINES 34-35 To visualize the diagram, the default is `display='diagram'`. .. GENERATED FROM PYTHON SOURCE LINES 35-38 .. code-block:: default set_config(display="diagram") pipe # click on the diagram below to see the details of each step .. GENERATED FROM PYTHON SOURCE LINES 39-40 To view the text pipeline, change to `display='text'`. .. GENERATED FROM PYTHON SOURCE LINES 40-43 .. code-block:: default set_config(display="text") pipe .. GENERATED FROM PYTHON SOURCE LINES 44-45 Put back the default display .. GENERATED FROM PYTHON SOURCE LINES 45-47 .. code-block:: default set_config(display="diagram") .. GENERATED FROM PYTHON SOURCE LINES 48-55 Displaying a Pipeline Chaining Multiple Preprocessing Steps & Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with multiple preprocessing steps, :class:`~sklearn.preprocessing.PolynomialFeatures` and :class:`~sklearn.preprocessing.StandardScaler`, and a classifier step, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 55-68 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LogisticRegression steps = [ ("standard_scaler", StandardScaler()), ("polynomial", PolynomialFeatures(degree=3)), ("classifier", LogisticRegression(C=2.0)), ] pipe = Pipeline(steps) pipe # click on the diagram below to see the details of each step .. GENERATED FROM PYTHON SOURCE LINES 69-75 Displaying a Pipeline and Dimensionality Reduction and Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with a dimensionality reduction step, :class:`~sklearn.decomposition.PCA`, a classifier, :class:`~sklearn.svm.SVC`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 75-84 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.decomposition import PCA steps = [("reduce_dim", PCA(n_components=4)), ("classifier", SVC(kernel="linear"))] pipe = Pipeline(steps) pipe # click on the diagram below to see the details of each step .. GENERATED FROM PYTHON SOURCE LINES 85-91 Displaying a Complex Pipeline Chaining a Column Transformer ############################################################################### This section constructs a complex :class:`~sklearn.pipeline.Pipeline` with a :class:`~sklearn.compose.ColumnTransformer` and a classifier, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 91-127 .. code-block:: default import numpy as np from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.linear_model import LogisticRegression numeric_preprocessor = Pipeline( steps=[ ("imputation_mean", SimpleImputer(missing_values=np.nan, strategy="mean")), ("scaler", StandardScaler()), ] ) categorical_preprocessor = Pipeline( steps=[ ( "imputation_constant", SimpleImputer(fill_value="missing", strategy="constant"), ), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( [ ("categorical", categorical_preprocessor, ["state", "gender"]), ("numerical", numeric_preprocessor, ["age", "weight"]), ] ) pipe = make_pipeline(preprocessor, LogisticRegression(max_iter=500)) pipe # click on the diagram below to see the details of each step .. GENERATED FROM PYTHON SOURCE LINES 128-134 Displaying a Grid Search over a Pipeline with a Classifier ############################################################################### This section constructs a :class:`~sklearn.model_selection.GridSearchCV` over a :class:`~sklearn.pipeline.Pipeline` with :class:`~sklearn.ensemble.RandomForestClassifier` and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 134-181 .. code-block:: default import numpy as np from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV numeric_preprocessor = Pipeline( steps=[ ("imputation_mean", SimpleImputer(missing_values=np.nan, strategy="mean")), ("scaler", StandardScaler()), ] ) categorical_preprocessor = Pipeline( steps=[ ( "imputation_constant", SimpleImputer(fill_value="missing", strategy="constant"), ), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( [ ("categorical", categorical_preprocessor, ["state", "gender"]), ("numerical", numeric_preprocessor, ["age", "weight"]), ] ) pipe = Pipeline( steps=[("preprocessor", preprocessor), ("classifier", RandomForestClassifier())] ) param_grid = { "classifier__n_estimators": [200, 500], "classifier__max_features": ["auto", "sqrt", "log2"], "classifier__max_depth": [4, 5, 6, 7, 8], "classifier__criterion": ["gini", "entropy"], } grid_search = GridSearchCV(pipe, param_grid=param_grid, n_jobs=1) grid_search # click on the diagram below to see the details of each step .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_pipeline_display.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_pipeline_display.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/miscellaneous/plot_pipeline_display.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_pipeline_display.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_pipeline_display.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_