.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/neighbors/plot_classification.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_neighbors_plot_classification.py: ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. .. GENERATED FROM PYTHON SOURCE LINES 10-63 .. code-block:: default import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets from sklearn.inspection import DecisionBoundaryDisplay n_neighbors = 15 # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target # Create color maps cmap_light = ListedColormap(["orange", "cyan", "cornflowerblue"]) cmap_bold = ["darkorange", "c", "darkblue"] for weights in ["uniform", "distance"]: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) _, ax = plt.subplots() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cmap_light, ax=ax, response_method="predict", plot_method="pcolormesh", xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], shading="auto", ) # Plot also the training points sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=iris.target_names[y], palette=cmap_bold, alpha=1.0, edgecolor="black", ) plt.title( "3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights) ) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_neighbors_plot_classification.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/neighbors/plot_classification.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/neighbors/plot_classification.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_classification.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_classification.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_